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Motivation

e Ozone dry deposition of ozone is an
important loss mechanism

* Models need accurate representations
to predict transport

e Deposition impacts plant health and
crop yields

e Airborne eddy-covariance flux
measurements require fast 1 — 10 Hz
measurements of ozone with precision
~ 0.1 ppb/s.

e Chemiluminescence can achieve this
sensitivity, but instrument is
complicated and labor intensive
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Approach

Develop compact, semi-autonomous UV absorption instrument with precision
comparable to Chemiluminescence
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The technique is similar to common cavity-based designs. Effective pathlength ~ 100m.
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Optical Design features
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Instrument Design: Rapid Ozone Experiment
(ROZE)

Specification Value
Size 60 x 44 x 18 cm
1 Weight 19 kg
o Power <200 W
! Data rate 10 Hz
- Precision (10-1s) 6.7 x 108 molec. cm™3
: Accuracy 6.2%
o 3 Time response 50 ms

ROZE is thermal vacuum tested up to 70 kft
Operated from -20 °C to > 40 °C



Data Acquisition

Tek i I Trig'd M Pos: 2.332ms TRIGGER i
r Type Yellow: LED Modulate signal (90%

duty cycle, 1 kHz)

Source

CH1

Pink: Amplified PMT signal
Slope

Rising

Mode 6 Blue: Averaging windows for LED ON
- and OFF

CH 1009 e B M 250w s
o) 26-Jun-18 0351 999.780Hz 1 kHz averaged to 10 Hz

Signal = Mean(ON) — Mean(OFF)




Calibration
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Precision and Time response

100K
N
\

:‘2\ 50 A_\ 80 pptv (10 Hz)

Q \

RS- \

CC) 7047 \

£ >-\— 31 pptv (1 Hz)

S 201 \

3 \

o \ .

~— T_0'47 |

10+ N
0.1 1 10 100

T (S)

O3 (ppbv)

Allan deviation plot for 1.3 hr of sampling zero air at
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ROZE time response: High ozone air was injected into the flow system via a

pulsed valve (10 ms open time) with a sample flow of 18 SLM.

70



Field Demonstration

FIREX-AQ July 30, 2019
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ROZE and NOyO3 measurements of 03 from the FIREX-AL field campaign averaged to | second. For 14 other FIREX-AQ
flights, slopes ranged from 0.96-1.04.

NOyO3 data courtesy of T. Ryerson



Field Demonstration: Interference
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ROZE is subject to interference from UV-active species (e.q., aromatic hydrocarbons, S0,). Figure colored by GO
mixing ratio (ppbv) to indicate smoke.
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Field Demonstration: remaining biases

Aug 29 flight from
Salina, KS flight
over KS, NE, OK
tallgrass prairie
fires
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DLH data courtesy of G. Diskin



Eddy covariance fluxes

SARP/FIREX-AQ July 17, 2019 Pacific Ocean, Altitude = 170 m
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Example spectra from a all km flux leq: a) Vertical wind-scalar cross covariance functions; b) Power spectra, normalized to total variance;

c) Co-spectral power of 03 and H20 with vertical wind (solid) and repective ogives (dashed).

MMS data courtesy of Paul Bui



ROZE Pictures

ROZE on DC-8 rack

Top view
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Thanks!
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Review status

A CaVity'En hanced UV AbSOl’ptiOﬂ This preprint is currently under review for
Instrument for ngh Precision, Fast the journal AMT.
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